shift in the $\sigma \rightarrow \sigma^*$ transition energy. The same effect is noted for the $\pi_x^*(b_1)$ orbital which is also forced higher in energy more than $\sigma^*(b_1)$ giving again a red shift from the trend in $\pi^* \rightarrow \sigma^*$ energies expected from the ionic model. The $\pi_{\nu}^{*}(a_{2})$ orbital is not of the proper symmetry to interact with the cesium 5p orbitals and its energy would not be affected by inner shell bonding in C_{2v} symmetry.

Finally, there is a red shift for each Br_2^- and I_2^- transition, and the Cl_2^- and F_2^- transitions,¹⁸ on going from the argon matrix-isolated $M^+X_2^-$ species to the X_2^- color center in the solid alkali halide lattice.¹⁰ The largest difference was found for the $\sigma \rightarrow \sigma^*$ transition of F_2^- . These differences in dihalide radical anion spectra must be attributed to the different types and symmetries of the immediate $X_2^$ ion environments in the two cases. It may also be possible that charge transfer to the halogen molecule in the $M^+X_2^$ species is not quite as complete as for the X_2^- color center, owing to the induced dipole moment on the intimately involved M^+ ion in the $M^+X_2^-$ species.

Matrix Reaction Chemistry. Although the tungsten lamp photolysis data are not as quantitatively accurate for $M^+Br_2^-$ and $M^+I_2^-$ as compared to the lighter species due to overlapping Br₂ absorption and a steeply rising background, a general statement can be made. The two heavier $M^+X_2^-$ species photodecompose more readily than $M^+Cl_2^-$; however, they are clearly more stable than $M^+F_2^-$. Again, the Cs⁺ compounds appear to be the most stable.

It is of considerable interest that the $M^+X_2^-$ intermediates are trapped in the matrix reaction experiments. In earlier crossed-molecular beam work, evidence has been presented for an electron transfer mechanism forming M⁺... X_2^- , which decomposed readily to give the final products of reactions 1 and 2. The role of the X_2^- ion in these reactions has been described by Herschbach.²⁶

Finally, the salt-molecule reactions (3 and 4) proceed readily under the conditions of these experiments. In fact these products increase on sample warming which indicates that reactions 3 and 4 have very little activation energy. This is in accord with the observation of a collision complex in the crossed-molecular beam reaction of CsI and Cl₂ which persisted for many vibrational periods and then decomposed to give CsCl and ICl.²⁷

Acknowledgments. This work was supported by the U.S. Energy Research and Development Administration, the University of Virginia, and the Alfred P. Sloan Foundation. The loan of a Model 21 Cryodyne by Cryogenic Technology, Inc., and a Cary 14 spectrophotometer by Professor C. B. Harris and the hospitality of Professor Leo Brewer are gratefully acknowledged.

References and Notes

- The author is a Sesquicentennial Associate, on leave from the Universi-ty of Virginia, and an Alfred P. Sloan Fellow. Address correspondence to this author at the Chemistry Department, University of Virginia, Charlottesville, Va. 22901.
- (2) R. O. Griffith, A. McKeown, and A. G. Winn, Trans. Faraday Soc., 29, 386 (1933).
- (3) H. Taube, J. Am. Chem. Soc., 70, 3928 (1948).
 (4) (a) F. Porret and J. Rossel, *Helv. Phys. Acta*, 42, 191 (1969); (b) M. C. R. Symons and I. N. Marov, J. Chem. Soc. A, 201 (1971).
- (5) E. B. Zvi, R. A. Beaudet, and W. K. Wilmarth, J. Chem. Phys., 51, 4166 (1969).
- (6) L. I. Grossweiner and M. S. Matheson, J. Phys. Chem., 61, 1089 (1957).
- (7) B. Cercek, M. Ebert, J. P. Keene, and A. J. Swallow, Science, 145, 919 (1964).
- (8) J. K. Thomas, Trans. Faraday Soc., 61, 702 (1965).
- (9) D. M. Brown and F. S. Dainton, *Nature (London)*, **209**, 195 (1966).
 (10) C. J. Delbecq, W. Hayes, and P. H. Yuster, *Phys. Rev.*, **121**, 1043 (1961).
- (11) H. N. Hersh, J. Chem. Phys., 31, 909 (1959).
- (12) G. Dobson and L. I. Grossweiner, Radiat. Res., 23, 290 (1964).
- (13) W. F. Howard, Jr., and L. Andrews, J. Am. Chem. Soc., 97, 2956 (1975).
- (14) C. A. Wight, B. S. Ault, and L. Andrews, to be submitted.
- (15) A. A. Passchier, J. D. Christian, and N. W. Gregory, J. Phys. Chem., 71, 937 (1967).
- (16) A. A. Passchier and N. W. Gregory, J. Phys. Chem., 72, 2697 (1968), and references therein (17) M. Tamres, W. K. Duerksen, and J. M. Goodenow, J. Phys. Chem., 72,
- 966 (1968).
- (18) L. Andrews, J. Am. Chem. Soc., preceding paper in this issue.

- E. Andrews, J. Am. Onem. Soc., preceding paper in this issue.
 F. W. Loomis and R. E. Nusbaum, *Phys. Rev.*, **40**, 380 (1932).
 R. S. Mulliken, *J. Chem. Phys.*, **55**, 288 (1971), and references therein.
 M. Oppenheimer and R. S. Berry, *J. Chem. Phys.*, **54**, 5058 (1971).
 W. Gabes and D. J. Stufkins, *Spectrochim. Acta, Part A*, **30**, 1835
- (1974).
 (23) P. B. V. Haranath and P. T. Rao, J. Mol. Spectrosc., 2, 428 (1958)
- (24) L. Andrews and R. R. Smardzewski, J. Chem. Phys., 58, 2258 (1973).
- (25) D. M. Lindsay, D. R. Herschbach, and A. L. Kwiram, Chem. Phys. Lett., 25, 175 (1974); J. Chem. Phys., 60, 315 (1974).
 (26) D. R. Herschbach, Adv. Chem. Phys., 10, 319 (1966).
- (27) D. L. King and D. R. Herschbach, Faraday Discuss. Chem. Soc., 55, 331 (1973).

A New Class of Nickel Hydrides. HNiL₃CN

J. D. Druliner, A. D. English, J. P. Jesson, P. Meakin, and C. A. Tolman*

Contribution No. 2249 from the Central Research Department, E.I. du Pont de Nemours and Company, Experimental Station, Wilmington, Delaware 19898. Received August 11, 1975

Abstract: Addition of HCN to phosphorus complexes of zerovalent nickel of the type NiL₄ gives a new class of five-coordinate nickel hydride complexes HNiL₃CN, which have been characterized in solution by ¹H and ³¹P NMR and ir. ¹H NMR line shape analysis of HNi(PEt₃)₃CN solutions indicates that PEt₃ exchanges by a dissociative process with $\Delta G_{300}^{\pm} = 12.0$ kcal/mol. The four-coordinate HNiL₂CN intermediates can be observed in solution if the ligands L have sufficient steric bulk.

Earlier papers reported that addition of strong acids, such as H_2SO_4 , to NiL₄ complexes (L = phosphorus ligand) causes protonation at the nickel to give cationic fivecoordinate hydride complexes HNiL4^{+,1,2} Crystalline salts of $HNi[Ph_2PCH_2CH_2PPh_2]_2^+$ and $HNiL_4^+$ (L = cyclic or bicyclic phosphite) have been isolated.³ We now wish to report that addition of the weak acid HCN to NiL₄ (or NiL₃) complexes gives a new class of five-coordinate nickel hydride complexes of the type HNiL₃CN.

Addition of HCN to solutions of NiL₄ (or NiL₃) complexes usually causes the solutions to change color rapidly to yellow or orange. Proton NMR spectra at -25° in non-

Table I. Proton NMR^a and Ir^b Data on HNiL₃CN Complexes

Ligand	–δ _H (ppm)	J _{HP} (Hz)	$\nu_{\rm CN}~({\rm cm}^{-1})$	$\nu_{\rm CO} ({\bf A}_1) \ ({\rm cm}^{-1})^c$
PEt ₃	19,4	41.5	2098	2061.7
PMe ₃	18.9	46.0	2100	2064.1
PPhMe ₂	18.4	43.0	2102	2065.3
PPh ₂ Me	16.4	39.0	2102	2067.0
PPh ₃	18.0	42.3	2108	2068.9
PPh ₂ OMe	16.4	38.5	2111	2072.0
$PPh(O-i-Pr)_2$	16.4	37.5		2072.2
$PPh(OBu)_2$	15.9	34.5		2073.4
PPh(OEt) ₂	15.9	34.0	2113	2074.2
$P(O-i-Pr)_3$	17.3	38.0	2116	2075.9
P(OEt) ₃	16.6	34.2	2120	2076.3
$P(OCH_2C-H_2OCH_3)_3$	16.4	33.5		2079.3
$P(OMe)_3$	16.6	32.8	2119	2079.5
$P(OCH_2C-H_2Cl)_3$			2130	2084.0
P(O-o-tolyl) ₃	15.2	38.0	2130	2084.1

^{*a*} In toluene-*d*₈ at -25° . Shifts are given from internal TMS at $\delta = 0.0$; negative values at high field. ^{*b*} In toluene at $+25^{\circ}$. ^{*c*} Values for Ni(CO)₃L in CH₂Cl₂ from Ref. 4.

Table II. ³¹P NMR Data^a on HNiL₃CN Complexes

Ligand	δ (NiL4)	δ (HNiL ₃ CN)	J _{PH} (Hz)
$\frac{PPh(OEt)_2^h}{P(OEt)_3^h}$ $\frac{P(O-o-tolyl)_3}{Ph_2P(CH_2)_4}$ $\frac{PPh_2}{PPh_2}$	-163.4	-151.5	32
	-157	-138	30
	-128.6°	-118.0	39
	-16.4^{d}	-21.5 ^e	>20 ^f

^{*a*} In toluene at -25° unless noted otherwise. Negative shifts are in ppm downfield from external 85% H₃PO₄. ^{*b*} In CH₂Cl₂. ^{*c*} NiL₃ complex. ^{*d*} For the [Ph₂P(CH₂)₄PPh₂]₂Ni complex. ^{*e*} Coordinated ends of the diphosphines. The free end appeared at +8.2 ppm with one-third the intensity. ^{*f*} Apparent coupling with off-resonance CW proton decoupling.

polar solvents (Table I) show a new 1:3:3:1 quartet at high field, indicating formation of a nickel hydrogen bond with coupling to three equivalent phosphorus nuclei. The resonance tends to appear at highest field for the best electron donating ligands, judging donor and acceptor character of L by the ν_{CO} (A₁) frequencies in Ni(CO)₃L complexes.⁴ The values of J_{PH} show less systematic variation. In the HNiL₄⁺ complexes² the chemical shift showed no systematic variation, while J_{PH} increased with the electron acceptor character of L.

The ³¹P NMR spectrum of Ni[PPh(OEt)₂]₄ in CH₂Cl₂ changed as HCN was added; the original NiL₄ resonance at -163.4 ppm (H₃PO₄) lost intensity and a new doublet (J_{PH} = 32 ± 3 Hz) grew in at -151.5, assigned to HNi[P-Ph(OEt)₂]₃CN. The doublet structure indicates that only one hydrogen is bound to nickel. ³¹P data on a few complexes are given in Table II.

The NMR data are in accord with a trigonal bipyramidal structure 1. This type of structure has been found in the iso-

electronic $HCo[PPh_3]_3(N_2)$ by x-ray diffraction.⁵

Five-coordinate hydridocyanides can also be formed from

Figure 1. The 36.43-MHz ${}^{31}P{}^{1}H{}$ CW decoupled spectrum of a solution of 2:1 HCN:Ni[Ph₂P(CH₂)₄PPh₂]₂ in benzene at 20°.

complexes containing chelating diphosphines. The ${}^{31}P{}^{1}H{}$ spectrum of Ni[Ph₂P(CH₂)₄PPh₂]₂ (0.1 M in benzene, 20°) showed a single resonance at -16.4 ppm. Addition of HCN in a ratio of 2:1 HCN:Ni eliminated the original resonance and gave two new ones in a 3:1 intensity ratio at -21.5 and +8.2 ppm. A spectrum with CW proton decoupling is shown in Figure 1. The decoupling frequency was adjusted to maximize decoupling of the non-hydridic protons. The low field resonance is clearly to be assigned to the coordinated ${}^{31}P$ nuclei in complex **2**; chemical shifts of bi-

dentate and bound monodentate phosphines are accidentally equal. The weaker high field resonance is due to the free end of one diphosphine. The chemical shift of uncoordinated diphosphine is +17.1 ppm. The 220-MHz ¹H spectrum of a similar solution at -31° showed a quartet hydride resonance at -19.4 ppm with J = 36 Hz, confirming the fivecoordinate structure of the hydridocyanide.

Corain and co-workers⁶ reported that HCN reacts rapidly with Ni[Ph₂P(CH₂)₄PPh₂]₂. Though no H₂ was evolved, they were unable to find a hydride resonance in the proton NMR spectrum and concluded that the product was a binuclear Ni(I) complex: Ni₂(CN)₂dpb₃ (dpb = Ph₂P(CH₂)₄PPh₂). Our work shows that the compound is the Ni(II) hydridocyanide complex **2**. The reported olefin isomerization⁷ in the presence of the complex is then readily understandable in terms of the metal hydride additionelimination mechanism established for HNi[P(OEt)₃]₄^{+, 8}

The difficulty encountered by Rigo, Corain, and Turco⁶ in identifying the ¹H hydride resonance is probably attributable to the rapid intermolecular phosphine exchange shown by many of the HNiL₃CN complexes. The left side of Figure 2 shows temperature dependent 220-MHz spectra of HNi[PEt₃]₃CN, prepared by the 1:1 addition of HCN to a solution of Ni[PEt₃]₄. In the low temperature limit the spectrum consists of a binominal quartet ($J_{PH} = 41.5$ Hz at -30°). As the temperature is raised the H-P coupling constant decreases slightly and the spectrum begins to broaden. At still higher temperatures the spectrum collapses to a

2157

Druliner, English, Jesson, Meakin, Tolman / Nickel Hydrides HNiL₃CN

OBSERVED CALCULATED

Figure 2. The 220-MHz ¹H hydride region spectra of $HNi(PEt_3)_3CN$ in toluene- d_8 at various temperatures.

sharp single line as a result of a fast intermolecular exchange process which removes H-P coupling. The ¹H NMR line-shapes are observed to be invariant to added ligand. This indicates the dissociative exchange process shown in eq 1.

$$HNiL_3CN \rightleftharpoons HNiL_2CN + L$$
 (1)

The calculated line shapes shown on the right in Figure 2 assume negligible dissociation of $HNi[PEt_3]_3CN$ over the -41° to $+20^\circ$ temperature range. The kinetic data obtained from Figure 2 and from spectra at other temperatures not shown can be fitted by the Arrhenius expression

$$k_1(T) = 10^{15.5} e^{15700/RT}$$

The corresponding Erying parameters are $\Delta G_{300}^{\pm} = 12.0$ kcal/mol, $\Delta H_{300}^{\pm} = 15.1$ kcal/mol, and $\Delta S_{300}^{\pm} = 10.3$ eu. The small positive entropy of activation is consistent with a dissociative process. Dissociative exchange in NiL₃(CN)₂ complexes has been established in NMR studies by Grimes and Pearson,⁹ who obtained similar parameters, for example, $\Delta H_{298}^{\pm} = 15.1$ kcal/mol and $\Delta S_{298}^{\pm} = 8.7$ eu when L = P(OEt)₃.

A variety of hydridocyanides was generated in solution by phosphorus ligand exchange. Figure 3 shows a series of ¹H NMR spectra obtained by adding increasing increments of $P(OEt)_3$ to a solution of $HNi[P(O-o-tolyl)_3]_3CN$. All stages of substitution represented by eq 2 to 4 are clearly visible.

 $HNiL_3CN + L' = HNiL_2L'CN + L$ (2)

$$HNiL_2L'CN + L' = HNiLL'_2CN + L$$
(3)

$$HNiLL'_{2}CN + L' = HNiL'_{3}CN + L$$
(4)

NMR data in Table I were obtained in this way for $L' = PPhMe_2$, $PPh(O-i-Pr)_2$, $PPh(OBu)_2$, and $P(O-CH_2CH_2OCH_3)_3$, since we did not have the starting NiL₄ complexes.

When excess $P(i-Pr)_3$ was added to a solution of $HNi[P(O-o-tolyl)_3]_3CN$ at -25° a triplet resonance was observed at -15.4 ppm ($J_{HP} = 60$ Hz) assigned to $HNi[P(i-Pr)_3]_2CN$. The same quantity of PEt₃ in a similar experiment gave only the five-coordinate $HNi[PEt_3]_3CN$. This indicates that equilibrium 1 can favor four-coordinate hydridocyanide complexes if the phosphorus ligands are sufficiently bulky. Green and co-workers¹⁰ have reported the isolation of $HNi[P(C_6H_{11})_3]_2CN$ (hydride triplet at -15.3, $J_{HP} = 64.5$ Hz), by metathesis from the hydridochloride.

Figure 3. The 90-MHz ¹H hydride region spectra of a solution of 0.1 M HNi[P(O-o-tolyl)₃]₃CN with added P(OEt)₃ in toluene- d_8 at 25°. P(OEt)₃ is (A) 0 M, (B) ~0.075 M, (C) ~0.15 M, and (D) ~0.3 M. The assignment is: (1) HNi[P(O-o-tolyl)₃]₃CN, (2) HNi[P(O-o-tolyl)₃]₂[P(OEt)₃]CN, (3) HNi[P(O-o-tolyl)₃][P(OEt)₃]₂CN, (4) HNi[P(OEt)₃]₃CN.

Formation of hydridocyanide complexes in solution could be followed by infrared spectroscopy. Addition of HCN to a toluene solution of $Ni(PEt_3)_4$ in a 1:1 mole ratio gave a clear yellow solution with a strong band at 2098 cm⁻¹ assigned to ν_{CN} of HNi[PEt₃]₃CN; the same spectrum was obtained with an equivalent amount of DCN. No bands assignable to v_{NiH} or v_{NiD} were observed. With excess HCN a gummy residue formed, the 2098-cm⁻¹ band decreased in intensity, and a new sharp band appeared at 2108 cm⁻¹ assigned to HNi(PEt₃)₂CN. Bands of free HCN (3225 and 2086 cm⁻¹) were not seen until the ratio of HCN:Ni reached \sim 3:1. Apparently excess HCN removes PEt₃ to form gummy residue and leave HNi(PEt₃)₂CN. Adding PEt₃ to the solution caused the 2098-cm⁻¹ band to grow in intensity at the expense of the 2108-cm⁻¹ band. The absence of HNi[PEt₃]₂CN until excess HCN was added indicates that K_1 is very small, as assumed in the NMR line shape analysis. A shift of $\sim 10 \text{ cm}^{-1}$ between five- and fourcoordinate complexes has also been observed in trans- $NiL_3(CN)_2$ and $NiL_2(CN)_2$ complexes.¹¹

Phosphorus ligand exchange experiments of the type shown in Figure 3 were also followed in the infrared. Addition of excess PEt₃ to a solution of HNi[P(O-o-tolyl)₃]₃CN gave complete conversion to HNi[PEt₃]₃CN. Excess P(*i*-Pr)₃ in a similar experiment gave mostly HNi[P(*i*-Pr)₃]₂CN ($\nu_{CN} = 2108 \text{ cm}^{-1}$) with only a little HNi[P(*i*-Pr)₃]₃CN. Excess P(*t*-Bu)₃ gave a band at 2115 cm⁻¹, assigned to HNi[P(O-o-tolyl)₃][P(*t*-Bu)₃]CN, but no lower frequencies even in 0.5 M phosphine.

Figure 4. Infrared spectra of solutions of 2:1 DCN (70% isotopic purity) and $Ni[Ph_2P(CH_2)_4PPh_2]_2$ in (a) C_6H_6 and (b) C_6D_6 . Dashed curves were obtained before DCN addition.

Reaction of HCN with NiL₃ or NiL₄ in most cases gave ν_{CN} of HNiL₃CN but not HNiL₂CN. The reaction of HCN with free phosphine which occurred with PEt₃ took place to a lesser extent with PMe₃, but not with the other phosphorus ligands shown in Table I. There were, however, other bands in the infrared spectra. The case of Ni[dpb]₂ is typical. Addition of HCN caused the HNiL₃CN band at 2100 cm^{-1} to grow until the ratio of HCN:Ni exceeded 1:1. With more HCN, bands of free HCN appeared at 3225 and 2086 cm⁻¹ and another band appeared at 2068 cm⁻¹. The excess HCN did not change the position or intensity of the 2100-cm⁻¹ band. DCN gave identical spectra over the range 4000-1000 cm⁻¹ until the ratio of DCN:Ni exceeded 1:1; then bands of free DCN appeared at 2500 and 1910 cm⁻¹ and other broad bands appeared at 2400 and 1820 cm⁻¹. Figure 4 shows spectra with DCN (70% isotopic purity) and Ni[dpb]₂ in a 2:1 ratio in C_6H_6 and C_6D_6 . Frequencies of the additional bands with excess HCN or DCN and other complexes were similar and quite insensitive to the phosphorus ligand involved. We conclude that the extra bands at ~ 2070 cm⁻¹ for HCN and ~ 2400 and $\sim 1820 \text{ cm}^{-1}$ for DCN arise from a second molecule of HCN (or DCN) hydrogen bonded to the HNiL₃CN. The position of attachment is not likely to be at the NiCN or on the nickel itself because (a) ν_{CN} of HNiL₃CN does not change with excess HCN; (b) the position of the additional bands does not depend on the electronic character of L; and (c) the additional bands are unaffected in most cases by addition of excess L. Corain⁶ et al. also concluded that the 2068-cm⁻¹ band observed with Ni[dpb]₂ and excess HCN was due to hydrogen-bonded HCN. With DCN they reported the 1820-cm⁻¹ band of $\nu_{\rm CN}$ in hydrogen-bonded DCN but did not report the ν_{CD} band at 2480 cm⁻¹.

The frequency of ν_{CN} in the HNiL₃CN complexes increases regularly as the phosphorus ligands become more electron withdrawing, as shown in Figure 5. This behavior is consistent with a reduced ability of the nickel to backbond into the cyanide π^* orbitals, and has been observed previously for ν_{CN} in NiL₃(CN)₂ and NiL₂(CN)₂ complexes.^{11,12}

Formation of HNiL₃CN complexes is rapid and quantitative in most cases; however, there are some exceptions.

Figure 5. Correlation of ν_{CN} of HNiL₃CN complexes with ν_{CO} (A₁) of Ni(CO)₃L (ref 4).

Reaction of Ni[P(OEt)₃]₄ in toluene required several hours at 75° with excess HCN to convert most of the nickel to HNi[P(OEt)₃]₃CN. This behavior can be contrasted with that of the more sterically crowded Ni[P(O-*i*-Pr)₃]₄, which reacted rapidly and quantitatively. Earlier studies¹³ showed much more extensive dissociation of the P(O-*i*-Pr)₃ in eq 5.

$$NiL_4 \rightleftharpoons NiL_3 + L \tag{5}$$

The dissociation of $P(OEt)_3$ has been shown to be very slow in a kinetic study by Meier, Basolo, and Pearson.¹⁴

The reaction of Ni[P(OEt)₃]₄ with HCN in methanol was much faster than in toluene, going to equilibrium in about an hour. Proton NMR spectra of methanol solutions show resonances due to both $HNiL_4^{+1,2}$ and $HNiL_3CN$, the concentration of the neutral complex growing with time at the expense of the cation.

Among the pathways for formation of HNiL₃CN which might be considered, two are shown in Scheme I: a nonionic

Scheme I

route, consisting of steps 5 and 6, with (5) rate determining; and an ionic route—steps 7–9. Protonation of Ni[P(OEt)₃]₄ is very fast, ^{15a} and dissociation of P(OEt)₃ is much more rapid from HNi[P(OEt)₃]₄^{+15b} than from Ni[P(OEt)₃]₄.¹⁴

Ni[P(OCH₂CH₂Cl)₃]₄ reacted slowly in toluene to give much less HNiL₃CN than with Ni[P(OEt)₃]₄; HNi-[P(OCH₂CH₂Cl)₃]₃CN was identified by a weak band at 2130 cm⁻¹ in the infrared. It is clear that electronic factors play a role in the formation of HNiL₃CN complexes. P(OEt)₃ and P(OCH₂CH₂Cl)₃ are sterically similar and probably have similar values of K_5 , since they compete about equally for coordination positions on Ni(0).¹⁶ K_6 must, however, be much smaller with P(OCH₂CH₂Cl)₃, indicating that oxidative addition of HCN becomes less favorable as the electron density on nickel decreases.¹⁷

Steric factors also play an important role. Ni[P(O-otolyl)₃]₄ reacts rapidly and quantitatively with HCN. The electronically similar but sterically less crowded Ni[P(Op-tolyl)₃]₄ reacted more slowly and to a much smaller extent; the initially colorless solutions turned yellow in the presence of HCN. A value of $K_{10} \sim 4 \times 10^{-4}$ (benzene, 25°) for $L = P(O-p-tolyl)_3$ was estimated by assuming the same uv extinction coefficients as found for HNi[P(O-otolyl)₃]₃CN (shoulders at 300 m μ (ϵ 6.2 × 10³) and 345 (3.6×10^3)). Note that $K_{10} = K_5 K_6$.

$$HCN + NiL_4 \rightleftharpoons HNiL_3CN + L$$
(10)

We expect that equilibrium constants K_6 are very similar for these two ligands; however, K_5 for the smaller ligand is smaller by a factor of $\sim 10^8$ at 25°.¹³

Four-coordinate platinum complexes HPt[PEt₃]₂CN and HPt[PPh₃]₂CN have been known for some time.¹⁹ No hydridocyanide complexes of Pd have been reported, though they have been proposed as intermediates in olefin hydrocyanation by Pd[P(OPh)₃]₄.²⁰ Hydrocyanation of α -olefins by $Ni[P(O-p-tolyl)_3]_4$ in the presence of $ZnCl_2$ has been reported by Taylor and Swift.21

Experimental Section

Solutions were prepared in inert atmospheres of nitrogen or argon in Vacuum Atmospheres, Inc., dryboxes. Solvents were deoxygenated by bubbling in the box. The NiL₄ or NiL₃ compounds were prepared as described earlier.¹⁶ HCN was added by volume (39 μ l/mmol) to serum-capped NMR tubes using a 50- μ l Hamilton syringe which had been chilled to 0° by immersing a dry test tube containing the syringe in ice. The serum-capped vial containing the HCN supply was also maintained at 0°. Caution. HCN is extremely toxic and should be used only in a well-ventillated hood. Heavy rubber gloves should be worn and any contact with skin or clothing carefully avoided.

Infrared spectra were recorded using 0.1-mm NaCl cells (Barnes Engineering, Inc.) in a Perkin-Elmer 221 spectrometer. Spectra were calibrated with CO gas (2143 cm⁻¹); reported frequencies are accurate to $\pm 3 \text{ cm}^{-1}$

Proton NMR spectra were recorded using 5-mm tubes on Varian HA-100 and 220-MHz instruments, measuring chemical shifts from internal tetramethylsilane (Me4Si); negative values are upfield. ³¹P NMR spectra were recorded using 5-mm tubes in a Varian HA-100 at 40.5 MHz or 10-mm tubes in a Brucker HFX-90/ Digilab FTS/NMR-3 system at 36.43 MHz. Chemical shifts are reported with respect to external 85% H₃PO₄, with upfield shifts considered positive.

The NMR line shape analysis for the hydride region ¹H spectrum of HNi[PEt₃]₃CN was carried out using a density matrix equation of motion very similar to that used in mutual exchange.²²⁻²⁴ The negligible dissociation assumed for the five-coordinate complex was verified by infrared spectra of similar solutions. The NMR line shape analysis was carried out assuming that the concentration of the four-coordinate HNi(PEt₃)₂CN intermediate is vanishingly small. The density matrix equation of motion used to analyze the hydride region ¹H NMR spectra is^{25,26}

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 2\pi_i [\rho,\mathcal{H}] + \left(\frac{\mathrm{d}\rho}{\mathrm{d}t}\right)_{\mathrm{relax}} + \sum_i (P_i \rho P_i - \rho)/2\tau_i \qquad (11)$$

where ρ is the spin density matrix and \mathcal{H} is the high resolution NMR Hamiltonian. P_i represents the spin flip matrix for the *i*th ^{31}P spin and τ_i is the preexchange lifetime for the *i*th ^{31}P spin. Because of the similarity of eq 11 to the equations used for simulating the NMR spectra for systems undergoing mutual exchange, existing programs for mutual exchange can readily be modified for this type of intermolecular exchange. The final expression for the NMR line shapes has the same form as the equation given by Sack²⁷ for exchange of a single line spectrum between several sites of different frequency.

$$I(\omega) = -Re[\mathbf{1} \cdot (\mathbf{A} - \mathbf{E}\,i\omega)^{-1} \cdot \mathbf{1}]$$
(12)

In the above equation, $I(\omega)$ is the absorption intensity at angular frequency ω under conditions of slow passage and weak radiofrequency fields. 1 is the unit vector of dimension equal to the sum of the number of transitions in the observed part of the spectrum (hydride region ¹H NMR spectrum). A is a complex non-Hermitian matrix given by $\mathbf{A} = \mathbf{X} + \mathbf{B}$ where **X** is the exchange matrix and **B** is a diagonal matrix whose elements are given by $B_{ii} = i\omega_i - 1/2$ T_{2i} . The ω_i are the transition frequencies in angular frequency units and the T_{2i} are the transverse relaxation times which determine the line widths in the absence of exchange; E is the unit matrix.

The equation is solved using the numerical method developed by Gordon and McGinnis;²⁸ Binsch;²⁹ and Shirmer, Noggle, and Gaines³⁰ which avoids inverting the matrix $(A - Ei\omega)$ by diagonalizing $(A - Ei\omega)$ at some particular ω and by using the fact that the transformation which diagonalizes $(A - Ei\omega)$ at some particular ω diagonalizes (A - Ei ω) at all ω 's. We have previously discussed the solution of equations of this type24 and have demonstrated the advantages of numerical factoring for the case of mutual exchange. Unfortunately, little or no factoring is possible for the case of intermolecular exchange and the magnitude of the numerical problems increases rapidly with increasing number of spins.

Acknowledgement. Dr. R. V. Lindsey of this department made the original suggestion and W. C. Drinkard carried out the first experiments which led to the development of an area of research of which our work is a part.

References and Notes

- (1) W. C. Drinkard, D. R. Eaton, J. P. Jesson, and R. V. Lindsey, Jr., Inorg. Chem., 9, 392 (1970).
- C. A. Tolman, Inorg. Chem., 11, 3128 (1972)
- (a) R. A. Schunn, *Inorg. Chem.*, 9, 394 (1970); (b) G. K. McEwen, C. J. Rix, M. F. Traynor, and J. G. Verkade, *ibid.*, 13, 2800 (1974).
 (4) C. A. Tolman, *J. Am. Chem. Soc.*, 92, 2953 (1970).
 (5) B. R. Davis, N. C. Payne, and J. A. Ibers, *Inorg. Chem.*, 8, 2719 (1969).
 (6) P. Rigo, B. Corain, and A. Turco, *Inorg. Chem.*, 7, 1623 (1968).
 (7) (A. Corain, Chem. (I. ender).

- (7) (a) B. Corain, Chem. Ind. (London), 1465 (1971); (b) Gazz. Chim. Ital., 102, 687 (1972); (c) B. Corain and G. Puosi, J. Catal., 30, 403 (1973).
 (8) (a) C. A. Tolman, J. Am. Chem. Soc., 94, 2994 (1972); (b) C. A. Tolman
- and L. H. Scharpen, J. Chem. Soc., Dalton Trans., 584 (1973). (9) C. G. Grimes and R. G. Pearson, Inorg. Chem., **13**, 970 (1974)
- (10) M. L. H. Green, T. Saito, and P. J. Tanfield, J. Chem. Soc. A, 152 (1971).
- (11) (a) E. J. Lukosius, Ph.D. Thesis, Michigan State University, 1972; (b) C. A. Tolman and E. J. Lukosius, to be submitted for publication.
- (12) K. J. Coskran, J. M. Jenkins, and J. G. Verkade, J. Am. Chem. Soc., 90, 5437 (1968).
- (13) C. A. Tolman, W. C. Seidel, and L. W. Gosser, J. Am. Chem. Soc., 96, 53 (1974).
- (14) M. Meier, F. Basolo, and R. G. Pearson, Inorg. Chem., 8, 795 (1969).
- (15) (a) C. A. Tolman, J. Am. Chem. Soc., 92, 4217 (1970); (b) ibid., 92, 6777 (1970).
- (16) C. A. Tolman, J. Am. Chem. Soc., 92, 2956 (1970).
- (17) The Ni 2p_{3/2} electron binding energies in NiL₄ complexes increase as the phosphorus ligands become more electronegative.¹⁸
- (18) C. A. Tolman, W. M. Riggs, W. J. Linn, C. M. King, and R. C. Wendt, *Inorg. Chem.*, **12**, 2770 (1973).
- (19) P. Uguagliatti and W. H. Baddley, J. Am. Chem. Soc., 90, 5446 (1968), and references therein.
- (20) E. S. Brown and E. A. Rick, Chem. Commun., 112 (1969).
- (21) B. W. Taylor and H. E. Swift, J. Catal., 26, 254 (1972).
- (22) J. I. Kaplan, J. Chem. Phys., 28, 278 (1958); 29, 462 (1958).
 (23) S. Alexander, J. Chem. Phys., 37, 967, 974 (1962); 38, 1787 (1963); 40, 2741 (1964).
- (24) P. Meakin, E. L. Muetterties, F. N. Tebbe, and J. P. Jesson, J. Am.
- Chem. Soc., 93, 4701 (1971). (25) Equation 11 will give the correct NMR line shapes only for first-order spin systems in which the nuclei undergoing exchange are different from those whose spectra are observed (or calculated). Our earlier analysis²⁶ of NMR line shapes for the X part of a *non-first-order* XAA' spin system using eq 11 is incorrect. The use of eq 11 also requires
- (26) J. P. Jesson and E. L. Muetterties in "Dynamic Magnetic Resonance Spectroscopy", F. A. Cotton and L. M. Jackman, Ed., Academic Press, New York, N.Y., 1974.
- (27) R. A. Sack, Mol. Phys., 1, 163 (1958).

- R. G. Gordon and R. P. McGinnis, J. Chem. Phys., 49, 2455 (1968).
 G. Binsch, J. Am. Chem. Soc., 91, 1304 (1969).
 R. E. Shirmer, J. H. Noggle, and D. F. Gaines, J. Am. Chem. Soc., 91, 300 (1997). 6240 (1969).